浪涌原理?
一、浪涌原理?
浪涌的产生原理
1、电力系统开关瞬态①主要的电力系统切换骚扰,例如电容器的切换;②配电系统中较小的局部开关动作或负载变化;③与开关器件(如晶闸管)相关联的谐振现象;④各种系统故障,例如设备组合对接地系统的短路和电弧故障。2、雷电的瞬态①直击雷,它击于外部电路,注入的大电流流过接地电阻或外部电路阻抗而产生的电压;②间接雷(即云层之间或云层中的雷击或击于附近物体的雷击产生的电磁场)它在建筑物内、外导体上产生感应电压和电流;③附近直接对地放电的雷电电流,当它耦合到设备组合接地系统的公共路径时产生感应电压。3、雷电等级划分
①LPZ 0A区:本区内的各物体都可能遭到直接雷击和导走全部雷电流;本区内的电磁场强度没有衰减。②LPZ 0B区:本区内的各物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,但本区内的电磁场强度没有衰减。③LPZ 1区:本区内的各物体不可能遭到直接雷击,流经各导体的电流比LPZ 0B区更小;本区内的电磁场强度可能衰减,这取决于屏蔽措施。④LPZ 2后续防雷区:当需要进一步减小流入的电流和电磁场强度时,应增设后续防雷区,并按照需要保护的对象所要求的环境区选择后续防雷区的要求条件。
二、浪涌发电原理?
电动机中有定子绕组,有转子绕组,而定子和转子之间有气隙。
当把电压加载在电动机定子上,由于转子还未旋转,此时的电流就是励磁涌流电流或者起动冲击电流Ip,这个值很大,大约为电动机额定电流的10到14倍;当转子开始旋转后,电流迅速降低到起动电流Ia,此时的电流大约为额定电流的6到7倍;当电动机的转速到达额定转速时,电机的电流下降到额定电流Ie。
三、浪涌耦合原理?
浪涌耦合作用是将组合波发生器(雷击浪涌发生器)的浪涌信号传送到EUT上,限制从电源线流入组合波发生器的电流对发生器本体造成破坏,减小对浪涌波形的影响。
一般浪涌信号耦合到EUT上的方式有电容耦合和气体放电管耦合,其中后者对组合波发生器的输出波形影响较明显,故前者较常见。若选用小的耦合电容值,则电源侧残余浪涌电压较低,但产生冲击电流的效率较低;若选用大的耦合电容值,则耦合到EUT效率较高,但残余电压较高。为兼顾输出效率和残余电压问题,国家标准指定线—线耦合(差模方式)采用18μF的电容,线—地耦合(共模方式)采用9μF的电容[5,8,9]。低压电网对地的源阻抗为12Ω,对于虚拟阻抗(定义为开路电压峰值与短路电流峰值之比)为2Ω的组合波发生器,在进行线—地耦合时,要另外再串联10Ω的附加电阻,以增加有效源阻抗。
四、泳池浪涌原理?
原理是通过模拟海浪的运动来产生人工浪花和浪涌效果。
2. 海浪池机器通过水泵将水注入池中,并通过特殊的机械装置产生波浪效果。
这些机械装置可以模拟海浪的起伏和涌动,使得水面产生起伏的波浪形态。
3. 海浪池机器的原理是基于流体力学和机械工程的知识,通过合理的设计和控制,可以产生各种不同大小和形态的波浪。
这种人工波浪可以用于水上运动训练、水上娱乐设施以及海洋工程等领域。
同时,海浪池机器也可以用于研究海浪对海岸线侵蚀、海洋能源开发等方面的影响,具有一定的科研价值。
五、浪涌管工作原理?
浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。
浪涌电流也指由于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。
主要类型及其工作原理
1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。
2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。
3.分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。
六、逆变器浪涌保护原理?
逆变器浪涌保护也被称作防雷器,作为一种电子设备,常常用于住宅、第三产业等领域,对雷电影响产生瞬时过压做保护措施。
浪涌保护器属于电子设备雷电防护中常见的设施,当电气回路受到外界的干扰,遇到尖峰电流(电压)时,保护器可以在短期内迅速导通分流,可以避免浪涌对设备造成一定的损害。
将电涌能量泄放入大地;当电涌过后,又可以恢复高阻状态,不会影响系统供电。
七、抗浪涌电阻原理?
浪涌保护电路的工作原理如下:
R1、C1、D1以及R2、C2、D2构成的是尖峰脉冲吸收电路。
目的是为了防止Q1截止时,开关变压器一次侧产生的反向电动势(极性:上负下正)将Q1击穿。
因为开关变压器二次侧输出的交流信号频率很高40KHz以上,这要求整流二极管的开关速度必须要足够高才行,一般开关电源的整流电路采用一个快恢复二极管进行半波整流,降低整流二极管的开关损耗,而快恢复二极管的正向压降较大,如果采用桥式整流,二级管的压降会增倍,二极管的功耗会增多。
八、防浪涌电容原理?
防浪涌电容按工作原理:浪涌保护器中的元件(压敏电阻MOV,硅雪崩二极管SAD、空气导管、大放电电容)是采用损耗自身的方式对冲击电流进行消解(发热,融化),从而使导入地下的冲击电流在安全范围之内,不会形成二次反击。抑制元件的自身寿命会因为反复承受电流冲击而缩短,SineTamer采用了40模块和热、电熔断双保险、热分担算法等,确保了SineTamer的使用寿命。SineTamer约消解90%的过电压和过电流,剩余的10%则导入地下。
九、浪涌模块工作原理?
浪涌保护器按工作原理分:
浪涌保护器中的元件(压敏电阻MOV,硅雪崩二极管SAD、空气导管、大放电电容)是采用损耗自身的方式对冲击电流进行消解(发热,融化),从而使导入地下的冲击电流在安全范围之内,不会形成二次反击。抑制元件的自身寿命会因为反复承受电流冲击而缩短,SineTamer采用了40模块和热、电熔断双保险、热分担算法等,确保了SineTamer的使用寿命。SineTamer约消解90%的过电压和过电流,剩余的10%则导入地下。
SPD并联于线路(L/N)与大地之间,在正常工作电压情况下,MOV处于高阻状态,相当于线路对地开路,不影响线路正常工作,故障显示窗口呈绿色,当线路由于雷电或开关操作出现瞬时脉冲过电压时,防雷模块在纳秒级时间内迅速导通,将过电压短路到大地泄放,当该脉冲过电压消失后,防雷模块又自动恢复高阻状态,不影响用户供电。
当防雷模块长期工作在超负荷工作状态,其性能劣化而发热到一定温度,模块中的热感断路器(K1)会自动断开避雷模块回路,保护电源电路工作不受影响,防止火灾发生,当线路感应过大雷电流时,过流断路器(K2)迅速断开,防止SPD爆炸。K1或K2动作后,SPD内脱扣装置动作,使故障显示窗口显示红色,提醒用户更换SPD模块,同时,脱扣装置带动遥信告警开关(SK)动作,输出故障告警信号。
(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。
(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。
(3)分流型或扼流型
分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。
扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。
(4)用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。
十、浪涌电流的产生原理?
浪涌电流指电源接通瞬间,流入电源设备的峰值电流。浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。
电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。